General Ellipse Packings in an Optimized Circle Using Embedded Lagrange Multipliers

نویسندگان

  • Frank J. Kampas
  • János D. Pintér
  • Ignacio Castillo
چکیده

The general ellipse packing problem is to find a non-overlapping arrangement of n ellipses with (in principle) arbitrary size and orientation parameters inside a given type of container set. Here we consider the general ellipse packing problem with respect to an optimized circle container with minimal radius. Following the review of selected topical literature, we introduce a new model formulation approach based on using embedded Lagrange multipliers. This optimization model is implemented using the computing system Mathematica: we present illustrative numerical results using the LGO global-local optimization software package linked to Mathematica. Our study demonstrates the applicability of the embedded Lagrange multipliers based modeling approach combined with global optimization tools to solve challenging ellipse packing problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of the Wake Flow Behind an Ellipse using Random Vortex Method (RESEARCH NOTE)

Direct numerical simulation of the wake flow around and behind a planar ellipse using a random vortex method is presented. Fluid is considered incompressible and the aspect ratios of ellipse and the angles of attacks are varied. This geometry can be a logical prelude to the more complex geometries, but less time dependent experimental measurements are available to validate the numerical results...

متن کامل

Effective Built-In Self-Test for Booth Multipliers

0740-7475/98/$10.00 © 1998 IEEE 105 MODULE GENERATORS PROVIDED by library vendors supply chip designers with optimized Booth multipliers, which are widely used as embedded cores in both generalpurpose data path structures and specialized digital signal processors. Designers frequently use Booth multipliers in areaand speedcritical parts of complex ICs. Compared to standard array multipliers, Bo...

متن کامل

On the duality of quadratic minimization problems using pseudo inverses

‎In this paper we consider the minimization of a positive semidefinite quadratic form‎, ‎having a singular corresponding matrix $H$‎. ‎We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method‎. ‎Given this approach and based on t...

متن کامل

Classical and quantum dynamics of a particle constrained on a circle

The Dirac method is used to analyze the classical and quantum dynamics of a particle constrained on a circle. The method of Lagrange multipliers is scrutinized, in particular in relation to the quantization procedure. Ordering problems are tackled and solved by requiring the hermiticity of some operators. The presence of an additional term in the quantum Hamiltonian is discussed. email:Antonell...

متن کامل

Boundedness of KKT Multipliers in fractional programming problem using convexificators

‎In this paper, using the idea of convexificators, we study boundedness and nonemptiness of Lagrange multipliers satisfying the first order necessary conditions. We consider a class of nons- mooth fractional programming problems with equality, inequality constraints and an arbitrary set constraint. Within this context, define generalized Mangasarian-Fromovitz constraint qualification and sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016